# under construction

RandomMatrix.randToeplitzFunction
randToeplitz(d, n;  norm, hermitian)
• d : entry distribution
• n : dimension
• norm : default false; if norm set to true, then the matrix will be normlaized with $n^{-1/2}$.
• hermitian: default true; if true the matrix will be Hermitian

Examples

Generate a $4 \times 4$ random Hermitian Toeplitz matrix with entries Standard Normal.

randToeplitz(4)

4×4 Matrix{Float64}:
1.10207   -0.47292   -0.745498   1.06809
-0.47292    1.10207   -0.47292   -0.745498
-0.745498  -0.47292    1.10207   -0.47292
1.06809   -0.745498  -0.47292    1.10207

Generate a $4 \times 4$ normalized random Toeplitz matrix with entries Exponential(1).

using Distributions
randToeplitz(Exponential(1),4, norm = true, hermitian = false)

4×4 Matrix{Float64}:
0.667888  0.260045  1.48812   0.477305
1.50374   0.667888  0.260045  1.48812
1.1475    1.50374   0.667888  0.260045
0.363966  1.1475    1.50374   0.667888
source
RandomMatrix.randHankelFunction
randHankel(d, n;  norm )

randHankel(n;  norm)
• d : entry distribution
• n : dimension
• norm : default false, if norm set to true, then the matrix will be normlaized with $n^{-1/2}$.

Examples

Generate a $5\times 5$ random Hankel matrix with entries uniformly distributed on $\{1, i, \pi \}$

randHankel((1,im,pi),5)

5×5 Matrix{Number}:
1   1  im  1   1
1  im   1  1   π
im   1   1  π   π
1   1   π  π   π
1   π   π  π  im
source